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One-Way Function

One-way function is used in the construction of pseudorandom
generator.

Informally, f is one-way if it is easy to compute but hard to
invert.

If P = NP, then there are no one-way functions

It is not ever known if P 6= NP implies there are one-way
functions.
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One-Way Function

Example

Examples of one-way functions

Discrete logarithm problem (xe mod n) for a large prime n

Factoring a product of two large primes

Nonnumber theoretic functions,including coding theory
problems
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One-Way Function

Definition

A function f : {0, 1}∗ → {0, 1}∗ is called one-way if hold:

1 easy to evaluate: There exist a polynomial-time algorithm
computing f (x) from every x ∈ {0, 1}∗

2 hard to invert: For every probabilistic polynomial-time
algorithm A, every polynomial p, and all sufficiently large n,

Pr [A(f (x), 1n) ∈ f −1(f (x))] <
1

p(n)

where the probability is taken uniformly over all possible
choices of x ∈ {0, 1}n and all the possible outcomes of the
internal coin tosses in A.
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Hidden Bit

Definition

A polynomial-time computable predicate b : {0, 1}∗ → {0, 1} is
called a hard-core (hidden bit) of a function f if for every
probabilistic polynomial-time algorithm A, every positive
polynomial p, and all sufficiently large n,

Pr [A(f (x)) = b(x)] <
1

2
+

1

p(n)

where the probability is taken uniformly over all possible choices of
x ∈ {0, 1}n and all the possible outcomes of the internal coin
tosses in A.
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Hiding Information

There are 2 agents A and B exchanging with message m

Shannon (1943) proved:
fully secure encryption system can exist if the size of the
secret information S which A and B agree on prior is as large
as the number of secret bits to be ever exchanged remotely
using the encryption system.

A
m +3

S

55 B
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Pseudorandom Generator Intuitively

Definition

Pseudorandom Generator is a deterministic program used to
generate a long sequence of bit which look like random sequences,
given as input a short random sequence (the input seed).

r truly random, G - PSRG, ⇒ G (r) ”looks like random“ and
|G (r)| � |r |
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Way of Using in Cryptography

Example

A
r

22 B

c = G (r)⊕m B

A c
+3 B

A m = c ⊕ G (r)
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Citation

Indistinguishable things are identical
(or should be considered as identical)

The Principle of Identity of Indiscernibles,
G.W.Leibnitz (1646-1714)

taken from:
Foundations of Cryptography - a Primer,

O. Goldreich
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Computational Indistinguishability

Definition

We say that bit string sets X = {Xn}n∈N and Y = {Yn}n∈N are
computationally indistinguishable if for every probabilistic
polynomial-time algorithm A, every polynomial p, and all
sufficiently large n,

|Pr [A(Xn) = 1]− Pr [A(Yn) = 1]| < 1

p(n)

where the probabilities are taken over the relevant distribution (X
or Y ) and over the internal coin tosses of algorithm A.
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Hybrid Argument Method

Method Construction

Assume that we have multiple samples of distributions X and
Y (that is, {{Xn}}m and {{Yn}}m for n,m ∈ N;

Consider sequence of samples Hi = {X1, . . . ,Xi ,Yi+1 . . .Ys}
for some s ∈ N - length of a hybrid Hi ;

Distinguishing H0 and Hs yields a procedure for distinguishing
Hi from Hi+1 for randomly chosen i (if D distinguishes X from
Y, then it also distinguishes a pair of neighboring hybrids);

Then, we can build distinguisher D’ for a single sample (S),
which choses i randomly, generates i samples {Xk} from X
and other samples {Yk} from Y, makes a sequence
{X1, . . . ,Xi ,S ,Y1, . . .} and runs D on it.
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Pseudorandom Generator

Definition

Let l : N → N satisfy l(n) > n ∀n ∈ N. A pseudorandom generator,
with stretch function l, is a (deterministic) polynomial-time
algorithm G satisfying:

1 ∀s ∈ {0, 1}∗, it holds that |G (s)| = l(|s|)
2 {G (Un)}n∈N and {Ul(n)}n∈N are computationally

indistinguishable, where Um denotes the uniform distribution
over {0, 1}m.
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Simple generator

Example

If we have a injective (one-to-one) one-way function
f : {0, 1}n → {0, 1}ln and b : {0, 1}n → {0, 1} is a hidden bit of f
then we can build a pseudorandom generator in a such way:

G (x) =< b(x), b(f (x)), b(f (f (x))), . . . , b(f l(|x |)(x)) >
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Simple generator

Theorem

Following conditions are equivalent:

The distribution X , in our case it is {G (Un)}n ∈ N, is
computationally indistinguishable from a uniform distribution
on {Ul(n)}n∈N

The distribution X is unpredictable in polynomial-time; no
feasible algorithm, given a prefix of sequence, can guess the
next bit with a sufficient advantage over 1

2
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Theorem proof

Theorem

Following conditions are equivalent:

1 The distribution X , is computationally indistinguishable from
a uniform distribution

2 The distribution X is unpredictable in polynomial-time;

Proof

Pseudorandomness implies polynomial-time unpredictability

Let’s prove the inverse:
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Theorem proof

Proof of 2 ⇒ 1

Suppose that exists algorithm
A : |Pr [A(x) = 1]− Pr [G (x) = 1]| > ε, ε > 0;

Reverse G ′(s) = G (s)l(|s|),...,1 =< b(f l(|x |)(x), . . . , b(x) >

choose a random k, consider Hk is a hybrid built from G’(X)
and Ul(n) (then G ′(X ) = Hn and y = H0);

Given b(f l−1(x)), . . . , b(f l−k(x)) A predicts b(f l−k−1(x))

x is chosen from Un then given y=f(x) one can predict b(x) by
invoking A on input
b(f k−1(y)) · · · b(y) = b(f k(x)) · · · b(f (x)) which is
polynomial-time computable from y.
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Theorem 2

Pseudorandom generators exist iff one-way functions exist
Proof
Given a pseudorandom generator (stretching in a factor 2) we
consider the function f(x,y)=G(x) and see that an algorithm which
inverts f also distinguishes between G (Un) and U2n
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Construct a pseudorandom function

Definition

fs(x) : {0, 1}n → {0, 1}n is pseudorandom function if it is infeasible
to distinguish values of fs for a random uniformly chosen s from
values of truly random function F : {0, 1}n → {0, 1}n
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Example

PSRG G stretches in a factor of 2: G (x) =< G0(x),G1(x) >; then
let’s build a binary tree:

�
�

�

A
A
A

x

A
A
A

�
�

�

A
A
A

�
�

G0(x) G1(x)

G0(G0(x)) G1(G0(x))
G0(G1(x))

G1(G1(x))
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Ways to use Pseudorandom Generator

randomized ciphers and stream ciphers

randomized algorithms simulation and removing random steps
from program execution

computer modeling in general
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One-Way Function for BBS

Let’s look at fBBS(x) = x2 mod n, n = pq for primes p and q
congruent to 3 modulo 4.

Solving a ≡ x2 mod n

a ≡ x2 ≡ (−x)2 mod p, and
a ≡ (−y)2 ≡ y2 mod q
Then there are four solutions for a ≡ z2 mod n (±cx ± dy), where

c ≡
{

1 mod p
0 mod q

d ≡
{

1 mod q
0 mod p
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One-Way Function for BBS

Squaring on Zn=pq where p ≡ q ≡ 3 mod 4

ap−1 ≡ 1 →
√

a ≡ a
p−1

2 , if p ≡ 3 mod 4 →
a

p−1
2 ≡ a2m+1 - unique square root in

Qp = {4m + 3 mod p} ⊂ Zp; Squaring is a permutation on Qp

(every square has a unique square root, which is itself a square).
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Hard Bit and the best of BBS

Claim

The least significant bit of x is a hard bit for the one-way function
fBBS

Direct computing of bits

GBBS(x){j} = lsb(x2j
mod n) = lsb(xα mod φ(n) where

φ(n) = (p − 1)(q − 1)
GBBS(x){j} is computed in time O(max{|x |3, |x |2 log j})
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Polynomial Parameter

Definition

Parameter kn is called polynomial if there is a constant c > 0 such
that ∀n ∈ N

1

cnc
≤ kn ≤ cnc

kn is called P-time polynomial parameter if in addition there is a
constant c ′ > 0 such that ∀n, kn is computable in time at most
c ′nc ′
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Function Ensemble

Definition

Let f : {0, 1}tn → {0, 1}ln denote a function ensemble, where tn
and ln are integer-valued P-time polynomial parameters and where
f with respect to n is a function mapping {0, 1}tn to {0, 1}ln .

f is injective ⇒ one-to-one function ensemble

f is injective and ln = tn ⇒ permutation ensemble

f : {0, 1}tn × {0, 1}ln → {0, 1}mn ⇒ ensemble with 2 inputs

At most every primitive in the paper (pseudorandom generator,
one-way function, hidden bit) will be discussed here as a function
ensemble.
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Adversary and security definition

Function ensemble may be broken (in some sense) by another
function ensemble.

For instance, adversary tries to break one-way function.

The ability of breaking something is measured by time-success
ratio.

Definition

Adversary A is a function ensemble, it is breaking another function
ensemble f. The time-success ratio of A for f Rtn = Tn/spn(A),
where tn is the length of the private input to f , Tn is the
worst-case running time of A.
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Shannon Entropy

Definition

Let D be a distribution on a set S. We define the information of x
with respect to d to be ID(x) = − log(D(x)); Let X be a random
value with distribution D (X ∈D S The Shannon Entropy of D is
H(D) = E [ID(X )]
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Computational Entropy

Definition

Let f : {0, 1}tn → {0, 1}ln be a P-time function ensemble and let
sn be a polynomial parameter. Then f has R-secure computational
entropy sn if there is a P-time function ensemble
f ′ : {0, 1}mn → {0, 1}ln such that f (Utn) and f ′(Umn) are R-secure
computationally indistinguishable and H(f ′(Umn)) ≥ sn.
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Construction steps

Any one-way function

False-Entropy Generator

Definition

Let f : {0, 1}tn → {0, 1}ln be a P-time function ensemble and let
sn be a polynomial parameter. Then f is an R-secure false-entropy
generator with false entropy sn if f (Utn) has R-secure
computational entropy H(f (Utn)) + sn.

False-entropy generator concept is that it’s computational
entropy g(X) is significantly greater than the Shannon entropy
of g(X).
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Construction steps

Pseudoentropy generator

Definition

Let f : {0, 1}tn → {0, 1}ln be a P-time function ensemble and let
sn be a polynomial parameter. Then f is an R-secure
pseudoentropy generator with pseudoentropy sn if f (Utn) has
R-secure computational entropy tn + sn.

Pseudoentropy generator concept is that it’s computational
entropy g(X) is significantly greater than the Shannon entropy
of X.

Pseudorandom generator
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My sources

1 A Pseudorandom Generator From Any One-Way Function by
J. Hastad,R. Implagliazzo, L. Levin and M. Luby

2 Lecture notes On Cryptography by S. Goldwasser and M.
Bellare

3 Foundations of Cryptography - A Primer by O. Goldreich
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Next-bit Test

1. Remember the algorithm which was able to distinguish between
hybrids and look at next definition:
A is called a next-bit test for a bit string generator if for any
generated string S it can predict from a prefix S1···p Sp+1 bit of the
string with some probability 1

2
Can a human test some generator?
This is a string 011 011 101 100 100 011 110 ???
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Linear Feedback Register

2. We have a simple Linear Feedback Shift Register. Build a tree
of pseudorandom functions for it and tell, how we can use such
functions in a telephone coin flip problem.
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Distributions and Entropy

3. We have a histogram of 2 distributions. Tell me, for which
distribution entropy is higher? what means entropy in this case?
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Break a classical pseudorandom scheme

4. We have
√

5 = 10.001111000110111 . . . it seems quite random.
But it’s an insecure generator. Try to prove it!
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